Release of TheoDORE 2.2

Version 2.2 of the TheoDORE wavefunction analysis package is available. Download the current version below.

New features of TheoDORE 2.2:

  • Support for spin-unrestricted calculations (by Sebastian Mai) – currently only tested for ORCA
  • Substituent-induced electron localization (SIEL) as described in Chem. Sci. 2020, 10.1039/D0SC01684E
TheoDORE – Download

Download the newest release of the TheoDORE wavefunction analysis program – TheoDORE 2.4 (22 April 2021)

Size: 12 MB
Version: 2.4

Full release notes:

Continue reading

The Columbus program system

Columbus is a collection of programs for high-level ab initio electronic structure computations. Through the use of multireference methods even highly challenging systems such as excited states and open-shell molecules are accessible. The availability of gradients and nonadiabatic coupling vectors allows for photodynamics simulations describing ultrafast internal conversion processes. The capabilities of Columbus have been showcased in a recent paper: The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry that just appeared in J. Chem. Phys. as part of a themed collection Electronic Structure Software.

A new release of the programm package, available to registered users, has been made available on the distribution page.

Release of TheoDORE 2.1

Version 2.1 of the TheoDORE wavefunction analysis package is available. To download the current version, please scroll down.

New features of TheoDORE 2.1:

TheoDORE – Download

Download the newest release of the TheoDORE wavefunction analysis program – TheoDORE 2.4 (22 April 2021)

Size: 12 MB
Version: 2.4

Full release notes:

Continue reading

TheoDORE – Tutorial

An updated version of the tutorial for the TheoDORE wavefunction analysis program is ready, thanks to Patrick. The tutorial can be downloaded here:

For the newest version of the code go here:

In the tutorial, we explain the process of creating conditional electron densities for visualising electron correlation (ChemPhotoChem 2019, 3, 702). The figure below shows a comparison between the ionic and covalent singlet and triplet B3u states of naphthalene.

The tutorial also explains the creation of bar graphs for a compact representation of excited-state character (see Coord. Chem. Rev., 2018, 361, 74 and ChemRxiv.11395314). In the picture below, the excited states of an iridium complex are decomposed into metal-to-ligand charge transfer (MLCT), ligand-to-ligand charge transfer (LLCT), and ligand centred (LC) contributions. The lowest six states are all dominated by MLCT character but the presented analysis clearly shows that the first three have enhanced LC character compared to the latter three.