Paper: Delayed fluorescence

Small modifications can make a big difference. Swapping anthraquinone for a thiophene based acceptor in a donor-acceptor-donor system produces the desired red shift in the emission but limits its quantum efficiency. This conclusion was drawn from a recent paper lead by Stephanie Montanaro and Iain Wright at Loughborough: Red-shifted delayed fluorescence at the expense of photoluminescence quantum efficiency – an intramolecular charge-transfer molecule based on a benzodithiophene-4,8-dione acceptor which just a appeared in PCCP.

Computations reveal that the reason for the reduced emission quantum efficiency lies in the presence of low-lying locally excited states (4 triplets and one singlet) on the central unit.

Paper: Visualisation of electron correlation

Felix’s first purely Loughborough grown paper just appeared as a Communication in ChemPhotoChem: “Visualisation of Electronic Excited‐State Correlation in Real Space“. The paper explores a new method for visualising electron correlation exemplified in the case excited states represented in the electron/hole picture. The idea is to fix the hole on one fragment of the system and to observe how the excited electron adjusts to this position.

Below, I am showing this analysis for the lowest 10 excited states of the system. The hole (shown in red) is always located on the second thiophene unit from the right. The electron (shown in blue) adjusts in different ways to this hole position, either moving toward it or going away from it.

As shown above, the method offers a new and intuitive way of viewing correlated exciton wavefunctions. It was also shown in this paper how the method allows to naturally distinguish between ionic and covalent states of naphthalene without any explicit reference to valence bond theory.

Paper: Two-Photon Polymerisation Initiators

A joint experimental and computational study with groups from Vienna and Geneva just appeared in Sci. Rep.: “Wavelength-optimized Two-Photon Polymerization Using Initiators Based on Multipolar Aminostyryl-1,3,5-triazines.” In this paper, the two-photon absorption properties of a new class of aminostyryl-triazines were investigated showing good agreement between experiment and computation. Furthermore, the practical applicability of these molecules for 3D-printing was shown.

Paper: Dynamics within an Exciton Model

Another paper working on improving the efficiency of surface hopping dynamics just appeared, this time in JCTC: “Surface hopping within an exciton picture – An electrostatic embedding scheme.” authored by M. F. S. J. Menger, F. Plasser, B. Mennucci, and L. González. In this paper, we explored the possibility of running nonadiabatic dynamics simulations within an exciton model. The main challenge in this endeavour was to derive a consistent energy expression for combining QM/MM electrostatic embedding calculations of the different chromophores.

Surface Hopping within an Exciton Scheme

To test the implementation, we ran simulations on a molecular dyad, where full TDDFT nonadiabatic dynamics simulations were available. Good agreement was found.

The method was implemented in the SHARC molecular dynamics package.

Paper: Multireference Approaches for Excited States

We just published a comprehensive and quite voluminous review paper about “Multireference Approaches for Excited States of Molecules”  in Chemical Reviews. The paper covers the major methods used nowadays, such as CASSCF, multireference (MR) configuration interaction, MR perturbation theory, and MR coupled cluster. It discusses the application of semiempirical Hamiltonians as well as connections to DFT. The emerging algorithms DMRG and full-CI Quantum Monte Carlo are included as well. The theory of gradients as well as MR diagnostics and wavefunction analysis are discussed. The presented applications include a variety of cases starting from diatomics and going to complexes and dimers.

For a more detailed discussion of the paper, visit barbatti.org. For download options, see below.

Download Options

Paper: Vibronic coupling constants

You can find our new paper “Interstate vibronic coupling constants between electronic excited states for complex molecules” that recently appeared in JCP. The purpose of this paper was the development of a method that allows to determine interstate vibronic coupling constants, which are a decisive ingredient for model Hamiltonians used in quantum dynamics. Our idea was to start with a method based on wavefunction overlaps that is commonly used for trajectory dynamics simulations and adapt it for the case of quantum dynamics.

Paper: Analysis of Transition Metal Complex Excited States

Doing computations on transition metal complexes can be very challenging. The problem is not only to find the correct computational method. But once the computation is finished, it is often difficult to even describe the results. The reason is that in the case of transition metal complexes there are many different possible types of state characters, a high density of states, and the orbitals are often not well resolved. Additional complications come into play due to spin-orbit coupling. For these reasons, we decided to  take a close look at how one could make the analysis of excited states in transition metal complexes easier.

Continue reading