Release of TheoDORE 3.0

Version 3.0 of the TheoDORE wavefunction analysis package is available. Download the current version below.

New features of TheoDORE 3.0

  • New user interface and documentation
  • Improvement for VIST (plot_vist)
  • Improvements for natural orbital analysis (analyze_nos) including unrestricted orbitals
  • LOC for ionic states (analyze_tden)
  • Jmol densities (jmol_mos)
  • State-to-state TDM
  • Updated ADF interface
  • ONETEP interface
  • Excitation number, modified from [DOI: (10.1021/acs.jctc.7b00963)]

Note: TheoDORE 3 has a modified user interface. To use TheoDORE call

theodore theoinp

theodore analyze_tden

theodore analyze_nos

etc.

TheoDORE – Download

Download the newest release of the TheoDORE wavefunction analysis program – TheoDORE 3.0 (31 August 2022)

Size: 12 MB
Version: 3.0

Full release notes

Continue reading

Substituted macrocycles

A recent study, lead by Florian Glöcklhofer from Imperial College London, explores the effect of methoxy and thiomethyl subtitutions on a formally antiaromatic macrocycle. The corresponding paper “[2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(p‑phenylene vinylene)s (PPVs)” is available via Open Research Europe, 1, 111, 2012.

The above figure compares the orbitals and aromaticity descriptors for different charge and spin states. Importantly, the symmetry is broken in the T1 state, inhibiting Baird aromaticity. By comparison, the symmetry is retained for the neutral singlet, dianion, and dication states all of which exhibit aromaticity.

Reversible P-P bond cleavage

Recent work out of the group of Martin Smith at Loughborough University presents the possibility of cleaving a P-P bond at an iridium(III) metal centre by adding an AuCl unit.

Computations elucidate the underlying energetics and rationalise the results using the natural bond orbitals (NBO) approach.

Graphical abstract: Reversible P–P bond cleavage at an iridium(iii) metal centre

You can find the full text as an Advance Article in Chem. Commun.: Reversible P–P bond cleavage at an iridium(III) metal centre.

Luminescent lanthanide probes

Recent research led by Samantha Bodman and Steve Butler from Loughborough University presents a luminescent lanthanide probe with selective affinity for adenosine monophosphate (AMP), able to differentiate AMP from the more highly charged analogues ADP and ATP.

Density functional theory computations shed insight onto the binding modes involved.

You can find the full article at Chem. Sci. 2022, 13, 3386.

libwfa: Wavefunction analysis tools

Our new paper “libwfa: Wavefunction analysis tools for excited and open-shell electronic states” was just published in WiRES Comp. Mol. Sci. The libwfa library provides a variety of visual and qunantitative analysis tools to post-process excited-state computations performed within Q-Chem and OpenMolcas.

You can find the libwfa functionality in the Q-Chem documentation under General Excited-State Analysis. To activate libwfa in Q-Chem, use

state_analysis = true

In OpenMolcas use the WFA module, activated via

&WFA