Boosting the Efficiency of Nonadiabatic Dynamics Simulations

<u>F. Plasser</u>,¹ S. Gómez,² M. F. S. J. Menger,^{2,3} S. Mai,² B. Mennucci,³ L. González² ¹Department of Chemistry, Loughborough University, UK; ²Institute of Theoretical Chemistry, University of Vienna, Austria; ³Dipartimento di Chimica e Chimica Industriale, University of Pisa, Italy

School of Science - Department of Chemistry

Introduction

- Simulation of ultrafast photodynamical processes using nonadiabatic dynamics
- Computational **cost too high** for many interesting cases
- *Idea*: Application of **model potentials** to speed up the dynamics [1, 2]

Frenkel exciton model

- Interaction of chromophores described using a Frenkel exciton model
- QM/MM electrostatic embedding
- Development of a consistent formalism including all types of interactions [2]

Linear vibronic coupling model

- Linear vibronic coupling (LVC) model: *Taylor expansion of the diabatic Hamiltonian matrix* [3]
- **Parameterisation:** Ground state frequencies and one singlepoint excited-state computation
- Overall computational **cost** of dynamics can be **reduced** by a factor ~1000 [1]

Intersystem crossing in SO₂

Compare dynamics at various levels of theory [1].

- Energy surfaces: *On-the-fly vs LVC model*
- Electronic structure: MR-CIS vs MR-CISD
- Dynamics method: SHARC vs MCTDH Main physics reproduced by all methods.

 $- {}^{1}\mathsf{B}_{1} - {}^{1}\mathsf{A}_{2} - {}^{1}\mathsf{B}_{2}$

Energy transfer in a molecular dyad

- Sub 100 fs energy transfer observed experimentally [4]
- Microscopic insight through computation [5]
- Compare to exciton model [2]

Photodynamics of adenine and 2-aminopurine

Implementation

- SHARC 2.0 molecular ulletdynamics package https://sharc-md.org
- Exciton dynamics via ightarrowGaussian interface
- Many different electronic ightarrowstructure codes for LVC

model parameterisation **PySHARC:** modular ulletpython driver for LVC runs SFARMO

Prediction of ultrafast oscillations in time-resolved luminescence [2]

REFERENCES

- 1. F. Plasser, S. Gómez, M. F. S. J. Menger, S. Mai, L. González, *PCCP*, **2019**, *21*, 57.
- 2. M. F. S. J. Menger, F. Plasser, B. Mennucci, L. González, JCTC, 2018, 14, 6139.
- 3. H. Köppel, W. Domcke, L. S. Cederbaum, Adv. Chem. Phys., **1984**, 57, 59–246.
- 4. G. J. Hedley, A. Ruseckas, A. C. Benniston, A. Harriman, I. D. W. Samuel, JPCA 2015, 119, 12665.
- 5. C. Wiebeler, F. Plasser, G. J. Hedley, A. Ruseckas, I.D. W. Samuel, S. Schumacher, *JPCL*, **2017**, *8*, 1086–1092

ACKNOWLEDGEMENTS

Funding from the Austrian Science Fund (FWF) within project I2883 is acknowledged. MFSJM acknowledges financial support from the EU Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 642294. The Vienna Scientific Cluster is thanked for computational support.

CONTACT INFORMATION Department of Chemistry Loughborough University Leicestershire, LE11 3TU, UK E: f.plasser@lboro.ac.uk W: fplasser.sci-public.lboro.ac.uk